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Abstract 

The optimal timing of air-to-ground tasks is undertaken. Specifically, a scenario where multiple air vehicles 
are required to prosecute geographically dispersed targets is considered. The vehicles must perform multiple tasks 
on each target. The targets must be found, classified, attacked, and verified as destroyed. The optimal performance 
of these tasks requires cooperation amongst the vehicles such that critical timing constraints are satisfied. In this 
paper, an optimal task assignment and timing algorithm is developed, using a mixed integer linear program, or 
MILP, formulation. MILP can be used to assign all tasks to the vehicles in an optimal manner, including variable 
arrival times, for groups of air vehicles with coupled tasks involving timing and task order constraints. When the air 
vehicles have sufficient endurance, the existence of a solution is guaranteed. 

1 Introduction 

Autonomous wide area search munitions (WASM) are small, powered uimianned air vehicles (UAV's), each with a 
turbojet engine and sufficient fuel to fly for a short period of time. They are deployed in groups, or "swarms," from 
larger aircraft flying at higher altitudes. They are typically deployed in groups of four, although larger swarms are 
certainly possible. They are individually capable of searching for, recognizing, and attacking targets. Cooperation 
between munitions has the potential to greatly improve their effectiveness in many situations. The ability to 
communicate target information to one another will greatly improve the capability of future search munitions. 

In [1-3], a time-phased network optimization model was used to perform task allocation for a group of powered 
munitions. The model is run simultaneously on all mimitions at discrete points in time, and assigns each vehicle one 
or more tasks each time it is run. The model is solved each time new information is brought into the system, 
typically because a new target has been discovered or an already-known target's status has been changed. The 
network optimization model is run iteratively so that all of the known targets will be completely prosecuted by the 
resulting allocation. Classification, attack, and battle damage assessment tasks can alfbe assigned to different 
vehicles when a target is found, resulting in the target being more quickly serviced. A single vehicle can also be 
given multiple task assignments to be performed in succession, if that is more efficient than having multiple vehicles 
perform the tasks individually. In [2], variable path lengths are added to guarantee that feasible trajectories will be 
calculated for all tasks. This method is computationally efficient and can quickly assign all of the needed tasks to 
the available vehicles, even for large numbers of vehicles, however the iterative procedure is heuristic and does not 
guarantee that the solution is near optimal. 

This paper proposes an optimal formulation for solving the coupled multiple-assignment problem. Formulating the 
problem in a Mixed Integer Linear Program (MILP) format will allow the optimal solution to be found while 
satisfying all timing constraints. The inclusion of continuous timing variables allows solutions with any feasible 
task completion times to be calculated. The MILP formulation for task assignment proposed was first presented in 
[4]. The initial formulation presented in [4] did not include some of the extensions and potential applications 
discussed here. Most importantly, [4] proposed the general methodology and architecture, but did not include 
solutions for meaningfully-sized problems, which this paper presents. In this paper, time is treated as a continuous 
variable and a rigorous optimal task assignment algorithm is developed. This requires the solution of a mixed integer 
linear program [6]. 

2 Scenario 

ASC "04-0147 
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Assume there is a number of wide area search munitions or air vehicles searching an area for unknown targets. 
Typically, four munitions will be deployed as a team, although multiple pods of four could be linked together to 
form a larger team. Vehicles travel in a pre-specified zamboni search pattern with a sensor that is capable of 
detecting and identifying potential targets. As the vehicles search, they come across enemy targets. When a potential 
target is discovered, it is necessary to have a second vehicle examine the target and classify it, to be confident that it 
is a valid target, and the target must then be attacked and verified as having been destroyed. The most common 
occurrence in this scenario is to fmd an individual target, and require the assignment of up to three vehicles to fully 
prosecute the target. That situation will be demonstrated in this paper. Having a larger number of air vehicles 
involved, or finding multiple targets in quick succession, would result in a larger assignment problem. This situation 
is addressed in a suboptimal manner in [1-3]. Here, we present an optimal mixed-integer linear programming 
solution for the «-target M'-vehicle assignment problem, as well as a solution example for the 1-target 3-vehicle case. 

Suppose we have n geographically dispersed targets with unknown position and w air vehicles (AV). We assume 
w ^ n +1. We then have n+w+1 nodes: n target nodes, w source (or vehicle) nodes, and one sink node. Nodes 
l,...,n are located at the w target positions. Nodes »+/,...n+w are located at the vehicle initial positions. Nodes 
M+W+; is the "sink". An air vehicle with no future target assignments is relegated to the sink, and will continue to 
search. A vehicle located at the sink cannot be reassigned during the present assignment computation. 

Spatial outlay: The flight time of AV v from node i to nodey is t^'^' > 0. The indices i=l, ...,n+w.j=l, ...n, and v 

= 1, ...,yv. The index k designates the task to be performed at node/ The time to travel firom node / to nodej 
depends on the particular AV's airspeed and the assigned task k. 

The tasks: Three tasks must be performed on each target. 
1. it=/- Classification 

2. it=2-Attack 

3. ^=3 - Target Damage Assessment (Verification) 

Furthermore, once an AV attacks a target, it is destroyed and can no longer perform additional tasks. This is 
certainly the case for powered munitions, but if the AV is a reusable aircraft, one has to account for the depletion of 
its store of ammunition following each attack. 

The three tasks must be performed on each target in the order listed. This results in critical timing 
constraints, which set this problem apart from the classical Vehicle Routing Problem (VRP). In the latter, rigid time 
windows for the arrival of the vehicles can be specified, however, the coupling brought about by the need to 
schedule the various tasks is absent. Evidently, our problem features some aspects of job shop scheduling. 

In the operational scenario considered, the number of problem parameters r v''*' is 3wn+3n(n-J)w = 3n^w. When 

Euclidean distances are used, the dimension of the parameter space is reduced to 0.5n(n-l)+wn= 0.5n(n+2w-l). 
Finally, the endurance of AV v is 7^, v = 1,..., w. 

Figure 1 illustrates a scenario where 1 stationary ground target is engaged by three AVs. The potential target's 
position is known at the beginning of the optimization, but not the classification. 

3 MILP Model 

The MILP model uses a discrete approximation of the real worid based on nodes that represent discrete start and end 
positions for segments of a UAVs path. Nodes representing target positions range from l...n and nodes for UAV 
positions range from l+n...w+n. There is also an additional logical node for the sink n+w+1. The sink node is used 
when a UAV is not assigned to attack a target; it goes to the sink when it is done with all of its tasks, or when it is 
not assigned another task. When a UAV enters the sink it is then used for searching the battlefield. The MILP model 
requires the minimum costs or times for a UAV to fly from one node to another node. We assume that any flight 
time larger than these minimum times is continuously achievable. These flight times are constants represented by 

t' 
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t>J' ', the time it takes UAV v to fly from node / to noAsj to perform task k. The flight times are positive real 

numbers, /V''*'>0. 

3.1 Decision Variables 

The decision variables x^' ' =\ if AV v is assigned to fly from node / to nodey and perform task kat node/, and 0 

otherwise;/ = 7, ...«+M',_/ = l,...,n, v = 7,...,w, andA:= 1,2,3. For task assignments A:=7,5, jTsy and for task 
assignment k=2 we allow / =j; the latter allows for an AV to perform the target classification task, and inmiediately 
thereafter attack the target. Thus far, we have wn(3n+]) binary decision variables. 

We also have the following additional binary decision variables. The decision variable Jf.-„,    . i = 1 if AV 

V is assigned to fly from node / to the sink n+w+1, and is 0 otherwise; v=7,...,w and i = /, ...,n+w. This adds (n+l)w 
binary decision variables. Entering the sink can also be thought of as being assigned to the search task. 

Continuous decision variables: 

TT.etimeofperformanceoftask.ontarget;isf>0;* = 7,2,5and, = 7  TT.us,wehave5« 

continuous decision variables. We also have w additional continous decision variables: the time AV v leaves nodej 
= « + V is ^v; V = 7, ...,w. In total we have w[n(3n+2)+lJ binary decision variables and 3n+w continuous non- 
negative decision variables. 

3.2 Cost Functions 

A variety of cost functions are possible, depending on the exact application, and other variations in the problem 
formulation. Possible cost functions include: 

1. Minimize the total flight time of the AVs 

;t=lv=l /=! y=l '■'      '■' 

2. Alternatively, minimize the total engagement time. The target j is visited for the last time at time ty. Let tf 

be the time at which all targets have been through Verification. Introduce an additional continuous decision 

variable tf e 31+. The cost function is then J = t and we minimize J subject to the constraints 

tf<tf,j^\ n (2) 

We also add a small weight to the time of performance of each individual task, to encourage each 
individual task to be completed as quickly as possible. Then 

J = tf + Jf\f>,j = \,...,n,k = \X-i, (3) 
(k) where cV ' > 0 is a small weight on the completion time of each individual task. To weight the time of 

performance ofindividual tasks more heavily, one could use J-c\ h\ ',J = \,...,n,k = 1,2,3. 

3. Other cost functions could also be formulated. For example, the problem could be formulated to maximize 
a benefit function, similar to that used in [1-3]. This would allow direct incorporation of competing search 
tasks, if all target tasks were not required to be completed. 

33 Constraints 

The formulation of the MILP is primarily based on the constraints. Proper enumeration of all of the required 
constraints is critical to achieving the desired vehicle behavior. 

1.   Mission completion requires that all three tasks are performed on each target exactly one time: 

%■■ 
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v=l/=l,,Vy  •' J-i,-,n 

and 

V=l  1=1 

This yields 3n constraints. 

2.   Not more than one AV is assigned to perfonn a specific task i on a specified target/ 

T xf'fhl,   v = l,....H.; (6) 

where^-/,...,« and k=l,3, and 

I 4/^^l.   v = l,....H';y = l,...,« (7) 
.=1    '■' 

This yields 3n constraints. This constraint is redundant with Constraint 1, and will not be included in the 
examples. However, this constraint could be important with modifications to the cost function and Constraint 1. 

3.    An AV V, coming fi^om the outside, can visit target/ at most once: 
3    n+w 
Z I   ^; I    "i-     (v.ft)<i^    v = l,...,w ^g^ 

This, and Condition 4 below, are simplifying assumptions that eliminate the possibility of loops. In addition, 
each AV v can only enter the sink once: 

This yields (n+l)w constraints. 

4.   AV V leaves node_/at most once: 

where j=],...,n. This yields nw constraints. 

5    A munition is perishable. An AV v can be assigned to attack at most one target. Thus, 
n n+w 

This yields w constraint equations. 

n n+w („^\ 
f^Ul,     VV = 1,...,H'. (11) 

;=1.=1 

1. If AV V is assigned to fly to target/ for Verification, it cannot possibly be assigned to attack target/: 

Z    4f^<l-    Z    xYf,   v = l,...,w;   - (12) 

where/ = 1, ...,n. Condition 3 renders Condition 6 redundant; we do however include Condition 6, because it 
holds in its own right, but also in the case where one would choose not to have recourse to the Simplifying 
Assumption which yields Condition 3. 

2. Continuity 1. If AV v enters target (node) j for the purpose of performing task 3, it must also exit target j: 

where/=/,...,«; v=l,...,w. 
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Continuity 2. If AV v enters target (node) j for the purpose of performing task 1, it must also "exit" target 
(node)j: 

T:cfeO,i     i   :^f^-^?^^,^^,     .    ^ej=l „;v=7  (14) 

Continuity 3. A munition is perishable. Thus, if AV v is assigned to fly to target (node)/ to perform task 
k=2, then, at any other point in time, AV v cannot also be assigned to fly from target/ to a target /, i^ j, to 
perform any other tastk at target i; recall that according to our Simplifying Assumption, AV v can enter target/ 
not more than once. Thus 

I      y     ;c(^'A) + xM <l-TxM 
A:=l,=l,iV/ 

where/=7, ...,n; v=l, ...,w. 

(15) 

Thus 
Continuity 4. If AV v is not assigned to visit node/, then it cannot possibly be assigned to fly out of node/. 

■M where/=7,...,«; v=7, ...,w. (16) 

Continuity 5. All AVs leave the source nodes. An AV leaves the source node even if this entails a direct 
assignment to the sink. 

y y x'"'*'• + x'"'       ,=1   Vv=i   w n7t 

Continuity 6. An AV cannot attack target (node) i, coming from target (node) /, unless it entered target 
(node) i to perform a classification. Thus 

>,2)<«+yv,l)     i = l,-,« 
'■''   ",i ■'■'' '  v=l,...,w- 

(18) 

3.   Timing Constraints 
Nonlinear equations which enforce the timing constraints are easily derived, and are given in [4]. We are 
however interested in an alternative formulation which uses linear inequalities. Thus, let 

7' = max,{7',};r=i- 
Then the linear timing constraints become: 

/•   -ij 
''■'       l=\,M '''   J 

wT 

(19) 

(20) 

(21) 

\        '        l=\,M   '    , 

,W>,(3) .,M)_ _xM)- T xM 2-x y   x^*^'- wT 

for i=l,...,n;j-l....,n; i¥= j ;v=l,...w; k=l,3. In addition, 

,(2)<,{l)^./v,2)    r2_;c('''2)-  T x('''')U 
\ 1=1,1*' J 

(22) 

(23) 

(24) 



t^hti.^"':'')- 
i,j 

(2)^(3) ^,(v,2)r2_>2)_   «+-    fv.3) 

wr 

wT 
l=l,M 

\ 1=1,1*1        ) 

for i=l, ...,n;j=l,...,«; / ?t j ;v=l,...w. 
Also, 

fy   c;fv- + '«+v,y    (^^   ^n+v,j J'^^ 

for ally=7,...,w; A: = /,2,5; v = l,...,w. 
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(25) 

(26) 

(27) 

(28) 

(29) 

These timing constraints operate in pairs. They are loose inequalities which do not come into play for assignments 

x^'j ' which do not occur, but effectively become hard equality constraints for assignments which do occur. Thus 

the time that a task k is performed on targety by AV v will be equal to the time that the preceding task was 
performed by AV v at node i, plus the time it will take AV v to fly from node / to node/ A similar constraint applies 
if AV V left its source node n+v to fly to node/ 

Furthermore, 

tf^t'jyj = \,...,n 

tf<t],'ij = \,...,Tl 
The timing constraints thus add 2nf(6n-l)w+}J linear inequality constraints. 

(30) 

(31) 

3.4 Extensions 

Additional constraints can be included. 
9. A vehicle's assigned path cannot be longer than its remaining endurance Ty. 

I."l!'    i    tff\f'f^<T^,     v = l,...,w (32) 
jfc=i /=i y=i,y#j •■'     '■' 

This yields w constraints. 
10. It is fairly easy to specify additional rigid time window constraints akin to the VRP, e.g., for time critical 

targets one could demand that the attack on targety take place after time tj', and not before time VJ', 

I.e. 

,p.,f.?f,    y/ = ,,...,« (33) 

11. Numerous other constraints can also be included, such as: specific vehicles performing certain tasks, 
minimum time delays between tasks, simultaneous completion of attack tasks, and requiring the vehicle 
that classifies a target to also attack it. With some constraints, such as vehicle endurance (Constraint 9), the 
existence of a solution is no longer guaranteed. 

12. Hetergeneous vehicles: For some applications, a set of heterogeneous vehicles would be used, with 
different capabilities. Some might be sensor platforms with no attack capability. Or some vehicles might 
simply have used all their ordinance, or not be carrying the proper ordinance to attack certain targets. In 

such cases, we add the constraint xY'j ' = 0 for any combination where vehicle v caimot perform task k on 

target/ 
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13. Partially prosecuted targets: If this algorithm was used for task assignment by a group of UAV's, 
additional targets and tasks could be added to the overall task list while some previously-known targets were 
already partly prosecuted. In this case, less than three tasks would be required for some targets, when the 
assignments were recalculated. For already completed tasks, we modify Constraint 1 such that 

I     I    x}f> = 0,    .       '    , (34) 
v=li=l,i;t/•' 7-l,--,n 

and 

E   I 4    =^'   J = ^'->" (35) 
V=l 7=1 

for any targety and task k that have already been completed. 

4 Problem Solution 

4.1 One Target and Three Avs 

We will first consider the case of one target and three AVs, i.e. «=7 and w=3, as the problem is small enough to be 
described in detail. In this case, we have 18 binaiy decision variables and 6 continuous decision variables. 
Minimizing the time the final task occurs will add an additional continuous decision variable /, for a total of 25 

decision variables. In this single-target case, we could exclude the additional variable and simply minimize tf, but 

the additional variable will be included to demonstrate the additional variable which would be required for « ^ 2. 
An example State Transition Diagram is given in Figure 1, for the n=2, w=3 case. 

(x,      x<)=fx(^'2)x(2.2);c(3>2)   (1,1)   (1,2)^ Vxi,...,X5;   ixjj   ,Xjj    ,xy    ,X2j ,X2j    I, 
There are 18 binary decision variables: , ,   ^    ,   ^    ,    ^    ,    ^    ,   ^ (36) 

U     x,n)=fx(^'^)x(2'l)^(2,2)^(2,3)   (3,1)) 
V^6.->^10;   1^^2,1 '^3,1   '^3,1   '^3,1   '%1  ') 

( s._( (3,2)   (3,3)   (l)    (2)   (3)^ 
\xii,...,xis)-\^x^^^   '^4,1   '^l,5'^l,5'^l,5j 

There are 7 continuous decision variables: 

{xig,...,X25)^\tl,t2,t34^\4^\4^\t] (37) 

We wish to minimize 
y = X25+0.l(x22+:f23+^24) (38) 
subject to the following constraints: 

From Constraint 1: 
x4+X7+xio=l 

X6+X9+Xi2=l (39) 
X5+X8+X11+X1+X2+X3 =1 

From Constraint 7.5: 
X4+X5+x6+xi6=l 

xy + xg + X9 + X17 = 1      " (40) 

X|0+xii+xi2+xi8=l 

Thus we have 6 equality constraints, plus the following inequality constraints. 
From Constraint 2: 
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X4+X-J +XIQ<1 

X6+x9+jq2^1 (41) 
X5 +xg +xi 1 +X1 +X2 +X3 ^ 1 

From Constraint 3: 
x4+xs+x6<l 

x-j+xs+x9^l (42) 

*10+*11+^12 ^1 

Constraints 4-6 drop out in the 1 -target case. 
The Continuity Constraints give: 
From 7.1: 
X6<Xi3 

^9 ^ ^14 (43) 

Xl2<Xi5 

From 7.2: 
x^ < X| + JCi3 ' 

X7<A:2+X24 (44) 

^10-^3+^15 

From 7.3: 
Ari3+Xl+X5 :S1 

*14+*2+^8^1 (45) 
jri5+X3+xii <1 

From 7.4: 
Xi3 ^^4 +Xg 

Xl4 < ^7 + Xp • (46) 

•^15^^10+^12 

From 7.5: 
The equality constraints given by Eq. 36. 

From 7.6: 
x^ ^ jf 4 

^2 ^ ^7 , (47) 

X3<Xio 

With only 1 target node, the Constraints associated with Eq (20-23) and (26,27) are not meaningful. So we are left 
with the following timing constraints: 

From Eq (24,25): 

^23 ^^22 + 'y    +{2-XI-x4)wT 

X23 ^ X22 + t^Y^ - (2 - XI - JC4 }wT 

8 
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X23 ^ A:22 + 'f J^^ - (2 - X2 - X7 )wT 

X23 ^*22 +'i,i +(2-^3 -^loK 

X23 ^^22 +'(5'^^-(2-^3 -^loV?' 

From Eq (28,29): 

X22^Aq9+4y + (l-^4Vr 

*22^^19+4!l  -(1-^4^ 

X22^X20+t^'h{\-xj)wT 

X22^x20+t^/^ -{^-x^)wT 

X22^X2l+4y) + (l-xio>v7' 

^22^^21+4y^-0-^loK 

and 
x23^xi9+t^fh{l-xs)yvT 

X23^xi9+t^^^^-{l-x5)wT 

X23^x20+t^f^ + {l-xs)wT 

X23^ xiQ + 4,1 '-^-xz^T 

^23^^21+4y^ + (l-^llV7' 

X22^X2l+4y)-(l-xii)w3" 

and finally, 

X24^^9+4',1   +(^-^6V^ 

x24^xi9+4y^-(l-^6K 

X24^x20+4^P + (l-X9)wr 

*24 ^*20 + 4,1 '-^-x<i)^T 

^24^*21+'iy^ + (l-^12K 

^24S:^21+4y^-(l-^12V'7' 

Also, from Eq (30,31), we have: 
xil ^X2T,-e 

(48) 

(49) 

(50) 

(51) 

(52) 
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and 

^23 ^-^24-^ (53) 
where f > 0 is a small positive constant. We will set f = 0.1. This enforces a small delay between each task being 
performed on a target. 

Finally, from Eq (2), we have 

^24^^25- (54) 
Thus the full set of constraints contains 6 equality constraints and 51 inequality constraints, for 57 total constraints. 
A few of them are redundant for this case, but might not be for a more complex problem. 

Let us make the simplifying assumption that the time to travel from node i to nodej to perform task k is independent 

of which task is required, and which vehicle is performing the task. Then /}^^*''simply becomes /,■ ,•. For this 

example, let 

'1,1=0.1 

'2,1=3.61 

'3,1=4.24 

/4,1=5.39 

We will arbitrarily set T =7V= 100 as the endurance of all of the AVs, so that endurance is not a constraint.  Then 
the optimal assignment is: 
Xi = ;, i=1.4. 9.14.18 
X, =0. i=2.3.5.....8.10.....13.15.16.17 
X, =0. {=19.20.21. 
X22 = 3.61 
X23=3.7I 

X24 = 4.24 
X2s = 4.24 

This corresponds with all 3 vehicles immediately leaving their source nodes (x,irX2i=0), and vehicle 1 performing 
classify and attack on the target at t=3.61 and 3.71 respectively, with vehicle 2 performing verification at T=4.24. 
Vehicle 3 flies direction to the sink (it is not assigned to this target, but continues to search). 

Suppose that it takes longer for a vehicle that has just classified a target to complete an attack on that target. Then 
we might have the initial conditions 

'2,1=3.61 

'3,1=4.24 

'4,1=5.39 

In this case, the assignment is identical, except that the attack occurs at t=4.61md the verification at t=4.71. This is 
an example where the verification had to be delayed so that it occurred afler the attack. 

Finally, suppose that Vehicle 3 is closer to the target initially, and we have the initial conditions 
'1,1=1 

'2,1=3.61 

'3,1=4.24 

'4,1=4.50 

Then the optimal assignment is: 
xi = 1.1=4,8,12.13.15 

ID 
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Xi =0. i=1.2,3,56.7.9,10,]l,14,16,17.18 
X, =0.1=19,20,21. 
X22 = 3.61 
X23=4.24 

X24 = 4.50 
X25 = 4.50 

This assignment requires all 3 vehicles to immediately leave their source nodes and proceed to the target on 
minimum-time trajectories. Vehicle 1 performed the classification, vehicle 2 the attack, and vehicle 3 the 
verification. Vehicles 1 and 3 then proceed to the sink (and continue to search for other targets). 

4.2 Larger Size Problems 

The size of the optimization problem expands rapidly as problem size increases. However, some practically-sized 
problems are amendable to optimal solution with this mixed-integer Imear program formulation. For n targets, w 
vehicles, and m=3 tasks per target, the problem size scales as follows: There are 
n(n-l)wm+n\vm+2nw+mn+2w+l decision variables. Of these, 3+nm+l are continuous timing variables, and the 
rest are binary decision variables. The number of constraints likewise grows exponentially. There are 
12*(n-l)*n*yv+9*n*w+2*n*w*m+2*n*m+3*w constraints. Of these, m*n+w are equality constraints. The rest are 
inequality constraints, including 7*n*w+2*w inequality non-timing constraints, and 
12*(n-l)*n*w+2*n*w+2*n*w*m+m*n inequality timing constraints. 

For n=2, v/=3, there are 51 binary decision variables, 10 continuous decision variables, 9 linear equality constraints, 
and 174 linear inequality constraints. For n=2, w=4, there are 68 binary decision variables, 11 continuous decision 
variables, 10 linear equality constraints, and 230 linear inequality constraints. For n=2, w=5, there are 85 binary 
decision variables, 12 continuous decision variables, 11 linear equality constraints, and 286 linear inequality 
constraints. Problem size and complexity grow much more rapidly with an increased number of targets. For n=3, 
w=4, there are 136 binary decision variables, 14 continuous decision variables, 13 linear equality constraints, and 
485 linear inequality constraints. The growth of constraints and variables is linear in the number of vehicles, but 
quadratic in the number of targets. 

The initial condition of a problem is defined by the relative distances, or flight times, between the nodes. For the 
following examples, let Tjj be defined as: 

0.2000 5.8310 7.0711 
5.8310 0.2000 7.2111 
7.0711 7.2111 0.2000 

7-=  7.2801 5.0000 3.0000 
9.2195 3.6056 8.0623 
3.1623 8.4853 10.000 
10.000 8.6023 3.1623 

where the start node / is indexed down the rows, and the end nodey is indexed over the columns. So the time for a 
vehicle to fly from node 4 to node 3 T43 = 3.0, and so on. The diagonal elements, i=j, correspond with a vehicle 
performing an attack on a target immediately after classifying it, and thus include only a small delay. The sink 
position does not matter, as it only exists conceptually. The time to reach it would not be meaningful. A vehicle that 
is assigned to the sink continues to search for potential targets along a predefined search path. 

For n=2, v=3, the optimal solution is for: Vehicle 1 to classify Target 1 at /=7.7and attack Target 1 at t=7.3. Vehicle 
3 to classify Target 2 at t=3.6, and attack Target 2 at t=3.8, and for Vehicle 2 to verify Target 2 at t=5.0, and verify 
Target 1 at t=10.8. This solution has an optimal minimum cost of J=14.6. All tasks are completed by t=10.8. This 
optimization problem took 1.06 seconds to solve using GnuTools on a 700MHz Pentium II processor. 

For n=2, v=4, the optimal solution is for: Vehicle 4 to classify Target 1 at i=3.2 and attack Target 1 at t=3.4. 
Vehicle 3 to classify Target 2 at t=3.6, and attack Target 2 at t=3.8. Vehicle 1 to verify Target 1 at t=7.1, and 
Vehicle 2 to verify Target 2 at /=5.0. This solution has an optimal minimum cost of J=9.67. All tasks are completed 
by t=7.1. In this case, the availability of an additional vehicle which started out closer to Target 1 allowed the tasks 

11 
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to be completed much more quickly. This optimization problem took 5.17 seconds to solve using GnuTools on a 
700MHz Pentium II processor The n=2, v=5 solution is identical, with the addition that vehicle 5 is assigned 
directly to the sink. All of the target tasks are completed by the same Vehicles, at the same times, as in the n=2, v=4 
case. The n=2, v=5 case is solved using GnuTools on a 700MHz Pentium II processor in 8.4 seconds. 

For n=3, v=4, the problem is starting to become quite complex. The optimal solution is for: Vehicle 2 to classify 
Target 2 at t=3.6 and attack Target 2 at t=3.8. Vehicle 1 to classify Target 3 at t=3.0, and attack Target 3 at t=3.2. 
Vehicle 4 to delay 0.14, then verify Target 3 at t=3.3, and then to classify Target 1 at t=10.4 and attack Target 1 and 
t=10.6, and for Vehicle 3 to verify Target 2 at t=8.5, and then verify Target 1 at t=14.3. This solution has an optimal 
minimum cost of J=20.4. All tasks are completed by t=14.3. In this case. Vehicle 4 exhibits a non-zero path length 
extension (delay) before beginning its set of tasks. If it had immediately proceeded to its first task without delay, it 
would have performed verification on Target 3 before the attack had occurred. For this case, the optimization 
problem took 27 minutes to solve. 

The n=3, v=5 case is solved in 193 minutes. Larger problems will be even more difficult to solve. However, the 
method can still be used for many practical problem sizes. Much faster processors than 700 MHz could be available, 
speeding up solutions somewhat. Typical problems will be in the n=2. v=4 size range. Wide Area Search Munitions 
are commonly dropped in pods of four, and four searching munitions will very rarely encoimter three or more targets 
nearly simultaneously.  For the rare occasion that three or more targets are encountered nearly simultaneously, the 
highest value targets could be assigned first in a 4 by 2 problem, and then the remaining tasks assigned to the 
remaining vehicles in a second assignment computation. Efficient suboptimal solutions can also be found for much 
larger problems by decomposing a larger problem into multiple smaller problems. A large problem with n=4, w=8 
can be decomposed into two n=2. w=4 problems and solved in a few seconds. Finally, some simplifications to the 
problem structure can be made, that should greatly reduce problem complexity and solution times. For small T*,,-, the 
vehicle that is assigned to classify a target is nearly always assigned to attack it as well. In this case, classify and 
attack can be grouped as a single task, substantially reducing the total number of tasks, variables, and constraints. 
Our future work will examine problem simplification and implementation into the MultiUAV simulation used in fl- 
3]. 

5 Conclusions 

We have presented a method for using a Mixed Integer Linear Program (MILP) formulation to find the optimal 
solution to a multiple-task assignment problem where the tasks are coupled by timing and task order constraints. 
TTiis formulation allows variation of vehicle flight paths to guarantee that timing constraints are satisfied, and 
directly incorporates the varying task completion times into the optimization. This is a promising formulation, 
which allows a true optimal solution for a very challenging problem. Solution results were presented for practical 
problem sizes, but scaling issues will require further work before the method can be applied to large problems. 
Future work will simply the problem structure to reduce complexity and apply the method to a task assignment 
problem in a detailed UAV simulation, including more realistic cost functions. 
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Targets 1 = 1.2,3,4.5 
j=1.2 
v= 1,2,3 
k = 1,2.3 

Sink 

Figure 1 - State Transition Diagram for 2 Targets, 3 Vehicles 
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